miss_summary
performs all of the missing data helper summaries and puts
them into lists within a tibble
See also
pct_miss_case()
prop_miss_case()
pct_miss_var()
prop_miss_var()
pct_complete_case()
prop_complete_case()
pct_complete_var()
prop_complete_var()
miss_prop_summary()
miss_case_summary()
miss_case_table()
miss_summary()
miss_var_prop()
miss_var_run()
miss_var_span()
miss_var_summary()
miss_var_table()
n_complete()
n_complete_row()
n_miss()
n_miss_row()
pct_complete()
pct_miss()
prop_complete()
prop_complete_row()
prop_miss()
Examples
s_miss <- miss_summary(airquality)
s_miss$miss_df_prop
#> [1] 0.04793028
s_miss$miss_case_table
#> [[1]]
#> # A tibble: 3 × 3
#> n_miss_in_case n_cases pct_cases
#> <int> <int> <dbl>
#> 1 0 111 72.5
#> 2 1 40 26.1
#> 3 2 2 1.31
#>
s_miss$miss_var_summary
#> [[1]]
#> # A tibble: 6 × 3
#> variable n_miss pct_miss
#> <chr> <int> <num>
#> 1 Ozone 37 24.2
#> 2 Solar.R 7 4.58
#> 3 Wind 0 0
#> 4 Temp 0 0
#> 5 Month 0 0
#> 6 Day 0 0
#>
# etc, etc, etc.
if (FALSE) {
library(dplyr)
s_miss_group <- group_by(airquality, Month) %>% miss_summary()
s_miss_group$miss_df_prop
s_miss_group$miss_case_table
# etc, etc, etc.
}