
Find the number of missing and complete values in a single run
Source:R/miss-x-run.R
miss_var_run.RdIt us useful to find the number of missing values that occur in a single run.
The function, miss_var_run(), returns a dataframe with the column names
"run_length" and "is_na", which describe the length of the run, and
whether that run describes a missing value.
Value
dataframe with column names "run_length" and "is_na", which describe the length of the run, and whether that run describes a missing value.
See also
pct_miss_case() prop_miss_case() pct_miss_var() prop_miss_var() pct_complete_case() prop_complete_case() pct_complete_var() prop_complete_var() miss_prop_summary() miss_case_summary() miss_case_table() miss_summary() miss_var_prop() miss_var_run() miss_var_span() miss_var_summary() miss_var_table() n_complete() n_complete_row() n_miss() n_miss_row() pct_complete() pct_miss() prop_complete() prop_complete_row() prop_miss()
Examples
miss_var_run(pedestrian, hourly_counts)
#> # A tibble: 35 × 2
#> run_length is_na
#> <int> <chr>
#> 1 6628 complete
#> 2 1 missing
#> 3 5250 complete
#> 4 624 missing
#> 5 3652 complete
#> 6 1 missing
#> 7 1290 complete
#> 8 744 missing
#> 9 7420 complete
#> 10 1 missing
#> # ℹ 25 more rows
if (FALSE) { # \dontrun{
# find the number of runs missing/complete for each month
library(dplyr)
pedestrian %>%
group_by(month) %>%
miss_var_run(hourly_counts)
library(ggplot2)
# explore the number of missings in a given run
miss_var_run(pedestrian, hourly_counts) %>%
filter(is_na == "missing") %>%
count(run_length) %>%
ggplot(aes(x = run_length,
y = n)) +
geom_col()
# look at the number of missing values and the run length of these.
miss_var_run(pedestrian, hourly_counts) %>%
ggplot(aes(x = is_na,
y = run_length)) +
geom_boxplot()
# using group_by
pedestrian %>%
group_by(month) %>%
miss_var_run(hourly_counts)
} # }