Skip to contents

Specify variables and their values that you want to convert to missing values. This is a complement to tidyr::replace_na.

Usage

replace_with_na(data, replace = list(), ...)

Arguments

data

A data.frame

replace

A named list given the NA to replace values for each column

...

additional arguments for methods. Currently unused

Value

Dataframe with values replaced by NA.

Examples


dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                         1,   "A",   -100,
                         3,   "N/A", -99,
                         NA,  NA,    -98,
                         -99, "E",   -101,
                         -98, "F",   -1)

replace_with_na(dat_ms,
               replace = list(x = -99))
#> # A tibble: 5 × 3
#>       x y         z
#>   <dbl> <chr> <dbl>
#> 1     1 A      -100
#> 2     3 N/A     -99
#> 3    NA NA      -98
#> 4    NA E      -101
#> 5   -98 F        -1

replace_with_na(dat_ms,
             replace = list(x = c(-99, -98)))
#> # A tibble: 5 × 3
#>       x y         z
#>   <dbl> <chr> <dbl>
#> 1     1 A      -100
#> 2     3 N/A     -99
#> 3    NA NA      -98
#> 4    NA E      -101
#> 5    NA F        -1

replace_with_na(dat_ms,
             replace = list(x = c(-99, -98),
                          y = c("N/A"),
                          z = c(-101)))
#> # A tibble: 5 × 3
#>       x y         z
#>   <dbl> <chr> <dbl>
#> 1     1 A      -100
#> 2     3 NA      -99
#> 3    NA NA      -98
#> 4    NA E        NA
#> 5    NA F        -1