This vector contains common values of NA (missing), which is aimed to
be used inside naniar functions miss_scan_count() and
replace_with_na(). The current list of
strings used can be found by printing out common_na_strings. It is a
useful way to explore your data for possible missings, but I strongly warn
against using this to replace NA values without very carefully looking at
the incidence for each of the cases. Please note that common_na_strings
uses \\ around the "?", "." and "*" characters to protect against using
their wildcard features in grep. Common NA numbers are in the data object
common_na_numbers.
Note
original discussion here https://github.com/njtierney/naniar/issues/168
Examples
dat_ms <- tibble::tribble(~x,  ~y,    ~z,
                          1,   "A",   -100,
                          3,   "N/A", -99,
                          NA,  NA,    -98,
                          -99, "E",   -101,
                          -98, "F",   -1)
miss_scan_count(dat_ms, -99)
#> # A tibble: 3 × 2
#>   Variable     n
#>   <chr>    <int>
#> 1 x            1
#> 2 y            0
#> 3 z            1
miss_scan_count(dat_ms, c("-99","-98","N/A"))
#> # A tibble: 3 × 2
#>   Variable     n
#>   <chr>    <int>
#> 1 x            2
#> 2 y            1
#> 3 z            2
common_na_strings
#>  [1] "missing" "NA"      "N A"     "N/A"     "#N/A"    "NA "     " NA"    
#>  [8] "N /A"    "N / A"   " N / A"  "N / A "  "na"      "n a"     "n/a"    
#> [15] "na "     " na"     "n /a"    "n / a"   " a / a"  "n / a "  "NULL"   
#> [22] "null"    ""        "\\?"     "\\*"     "\\."    
miss_scan_count(dat_ms, common_na_strings)
#> # A tibble: 3 × 2
#>   Variable     n
#>   <chr>    <int>
#> 1 x            4
#> 2 y            4
#> 3 z            5
replace_with_na(dat_ms, replace = list(y = common_na_strings))
#> # A tibble: 5 × 3
#>       x y         z
#>   <dbl> <chr> <dbl>
#> 1     1 A      -100
#> 2     3 NA      -99
#> 3    NA NA      -98
#> 4   -99 E      -101
#> 5   -98 F        -1
