Function reference
-
as_shadow()
- Create shadows
-
as_shadow_upset()
- Convert data into shadow format for doing an upset plot
-
bind_shadow()
- Bind a shadow dataframe to original data
-
nabular()
- Convert data into nabular form by binding shade to it
-
gather_shadow()
- Long form representation of a shadow matrix
-
shade()
- Create new levels of missing
-
shadow_long()
- Reshape shadow data into a long format
-
unbind_shadow()
unbind_data()
- Unbind (remove) shadow from data, and vice versa
-
shadow_shift()
- Shift missing values to facilitate missing data exploration/visualisation
Create special missing values
Create special missing values so that they don’t get lost! See vignette("special-missing")
.
-
recode_shadow()
- Add special missing values to the shadow matrix
-
geom_miss_point()
- Plot Missing Data Points
-
stat_miss_point()
- stat_miss_point
-
gg_miss_case()
- Plot the number of missings per case (row)
-
gg_miss_case_cumsum()
- Plot of cumulative sum of missing for cases
-
gg_miss_fct()
- Plot the number of missings for each variable, broken down by a factor
-
gg_miss_span()
- Plot the number of missings in a given repeating span
-
gg_miss_upset()
- Plot the pattern of missingness using an upset plot.
-
gg_miss_var()
- Plot the number of missings for each variable
-
gg_miss_var_cumsum()
- Plot of cumulative sum of missing value for each variable
-
gg_miss_which()
- Plot which variables contain a missing value
-
miss_var_prop()
complete_var_prop()
miss_var_pct()
complete_var_pct()
miss_case_prop()
complete_case_prop()
miss_case_pct()
complete_case_pct()
- Proportion of variables containing missings or complete values
-
miss_case_cumsum()
- Summarise the missingness in each case
-
miss_case_summary()
- Summarise the missingness in each case
-
miss_case_table()
- Tabulate missings in cases.
-
miss_prop_summary()
- Proportions of missings in data, variables, and cases.
-
miss_scan_count()
- Search and present different kinds of missing values
-
miss_summary()
- Collate summary measures from naniar into one tibble
-
miss_var_cumsum()
- Cumulative sum of the number of missings in each variable
-
miss_var_run()
- Find the number of missing and complete values in a single run
-
miss_var_span()
- Summarise the number of missings for a given repeating span on a variable
-
miss_var_summary()
- Summarise the missingness in each variable
-
miss_var_table()
- Tabulate the missings in the variables
-
miss_var_which()
- Which variables contain missing values?
-
n_var_complete()
n_case_complete()
- The number of variables with complete values
-
n_var_miss()
n_case_miss()
- The number of variables or cases with missing values
-
n_complete()
- Return the number of complete values
-
n_complete_row()
- Return a vector of the number of complete values in each row
-
n_miss()
- Return the number of missing values
-
n_miss_row()
- Return a vector of the number of missing values in each row
-
prop_miss_case()
prop_complete_case()
- Proportion of cases that contain a missing or complete values.
-
prop_miss_var()
prop_complete_var()
- Proportion of variables containing missings or complete values
-
prop_complete()
- Return the proportion of complete values
-
prop_complete_row()
- Return a vector of the proportion of missing values in each row
-
prop_miss()
- Return the proportion of missing values
-
prop_miss_row()
- Return a vector of the proportion of missing values in each row
-
pct_miss_case()
pct_complete_case()
- Percentage of cases that contain a missing or complete values.
-
pct_miss_var()
pct_complete_var()
- Percentage of variables containing missings or complete values
-
pct_complete()
- Return the percent of complete values
-
pct_miss()
- Return the percent of missing values
-
any_na()
any_miss()
any_complete()
all_na()
all_miss()
all_complete()
- Identify if there are any or all missing or complete values
-
any_row_miss()
- Helper function to determine whether there are any missings
-
is_shade()
are_shade()
any_shade()
- Detect if this is a shade
-
which_are_shade()
- Which variables are shades?
-
common_na_numbers
- Common number values for NA
-
common_na_strings
- Common string values for NA
-
add_any_miss()
- Add a column describing presence of any missing values
-
add_label_missings()
- Add a column describing if there are any missings in the dataset
-
add_label_shadow()
- Add a column describing whether there is a shadow
-
add_miss_cluster()
- Add a column that tells us which "missingness cluster" a row belongs to
-
add_n_miss()
- Add column containing number of missing data values
-
add_prop_miss()
- Add column containing proportion of missing data values
-
add_shadow()
- Add a shadow column to dataframe
-
add_shadow_shift()
- Add a shadow shifted column to a dataset
-
add_span_counter()
- Add a counter variable for a span of dataframe
Replacing values with and to NA
Functions to help replace certain values with NA, which includes scoped variants (_at, _if, _all) that take formulas for flexible approachs. vignette("replace-with-na")
-
replace_with_na()
- Replace values with missings
-
replace_with_na_all()
- Replace all values with NA where a certain condition is met
-
replace_with_na_at()
- Replace specified variables with NA where a certain condition is met
-
replace_with_na_if()
- Replace values with NA based on some condition, for variables that meet some predicate
-
replace_to_na()
- Replace values with missings
-
replace_na_with()
- Replace NA value with provided value
Imputation helpers
Simple imputation methods for exploring visualisation and missingness structure. See vignette("exploring-imputed-values")
for more details.
-
impute_below()
- Impute data with values shifted 10 percent below range.
-
impute_below(<numeric>)
- Impute numeric values below a range for graphical exploration
-
impute_below_all()
- Impute data with values shifted 10 percent below range.
-
impute_below_at()
- Scoped variants of
impute_below
-
impute_below_if()
- Scoped variants of
impute_below
-
impute_factor()
- Impute a factor value into a vector with missing values
-
impute_fixed()
- Impute a fixed value into a vector with missing values
-
impute_mean()
- Impute the mean value into a vector with missing values
-
impute_median()
- Impute the median value into a vector with missing values
-
impute_mode()
- Impute the mode value into a vector with missing values
-
impute_zero()
- Impute zero into a vector with missing values
-
impute_mean_all()
impute_mean_at()
impute_mean_if()
- Scoped variants of
impute_mean
-
impute_median_all()
impute_median_at()
impute_median_if()
- Scoped variants of
impute_median
-
set_prop_miss()
set_n_miss()
- Set a proportion or number of missing values
-
naniar-package
naniar
- naniar: Data Structures, Summaries, and Visualisations for Missing Data
-
cast_shadow()
- Add a shadow column to a dataset
-
cast_shadow_shift()
- Add a shadow and a shadow_shift column to a dataset
-
cast_shadow_shift_label()
- Add a shadow column and a shadow shifted column to a dataset
-
label_miss_1d()
- Label a missing from one column
-
label_miss_2d()
- label_miss_2d
-
label_missings()
- Is there a missing value in the row of a dataframe?
-
where_na()
- Which rows and cols contain missings?
-
which_na()
- Which elements contain missings?
-
.where()
- Split a call into two components with a useful verb name
-
oceanbuoys
- West Pacific Tropical Atmosphere Ocean Data, 1993 & 1997.
-
pedestrian
- Pedestrian count information around Melbourne for 2016
-
riskfactors
- The Behavioral Risk Factor Surveillance System (BRFSS) Survey Data, 2009.
-
mcar_test()
- Little's missing completely at random (MCAR) test
-
StatMissPoint
- naniar-ggproto