
Package index
-
as_shadow() - Create shadows
-
as_shadow_upset() - Convert data into shadow format for doing an upset plot
-
bind_shadow() - Bind a shadow dataframe to original data
-
nabular() - Convert data into nabular form by binding shade to it
-
gather_shadow() - Long form representation of a shadow matrix
-
shade() - Create new levels of missing
-
shadow_long() - Reshape shadow data into a long format
-
unbind_shadow()unbind_data() - Unbind (remove) shadow from data, and vice versa
-
shadow_shift() - Shift missing values to facilitate missing data exploration/visualisation
Create special missing values
Create special missing values so that they don’t get lost! See vignette("special-missing").
-
recode_shadow() - Add special missing values to the shadow matrix
-
geom_miss_point() - Plot Missing Data Points
-
stat_miss_point() - stat_miss_point
-
gg_miss_case() - Plot the number of missings per case (row)
-
gg_miss_case_cumsum() - Plot of cumulative sum of missing for cases
-
gg_miss_fct() - Plot the number of missings for each variable, broken down by a factor
-
gg_miss_span() - Plot the number of missings in a given repeating span
-
gg_miss_upset() - Plot the pattern of missingness using an upset plot.
-
gg_miss_var() - Plot the number of missings for each variable
-
gg_miss_var_cumsum() - Plot of cumulative sum of missing value for each variable
-
gg_miss_which() - Plot which variables contain a missing value
-
miss_var_prop()complete_var_prop()miss_var_pct()complete_var_pct()miss_case_prop()complete_case_prop()miss_case_pct()complete_case_pct() - Proportion of variables containing missings or complete values
-
miss_case_cumsum() - Summarise the missingness in each case
-
miss_case_summary() - Summarise the missingness in each case
-
miss_case_table() - Tabulate missings in cases.
-
miss_prop_summary() - Proportions of missings in data, variables, and cases.
-
miss_scan_count() - Search and present different kinds of missing values
-
miss_summary() - Collate summary measures from naniar into one tibble
-
miss_var_cumsum() - Cumulative sum of the number of missings in each variable
-
miss_var_run() - Find the number of missing and complete values in a single run
-
miss_var_span() - Summarise the number of missings for a given repeating span on a variable
-
miss_var_summary() - Summarise the missingness in each variable
-
miss_var_table() - Tabulate the missings in the variables
-
miss_var_which() - Which variables contain missing values?
-
n_var_complete()n_case_complete() - The number of variables with complete values
-
n_var_miss()n_case_miss() - The number of variables or cases with missing values
-
n_complete() - Return the number of complete values
-
n_complete_row() - Return a vector of the number of complete values in each row
-
n_miss() - Return the number of missing values
-
n_miss_row() - Return a vector of the number of missing values in each row
-
prop_miss_case()prop_complete_case() - Proportion of cases that contain a missing or complete values.
-
prop_miss_var()prop_complete_var() - Proportion of variables containing missings or complete values
-
prop_complete() - Return the proportion of complete values
-
prop_complete_row() - Return a vector of the proportion of missing values in each row
-
prop_miss() - Return the proportion of missing values
-
prop_miss_row() - Return a vector of the proportion of missing values in each row
-
pct_miss_case()pct_complete_case() - Percentage of cases that contain a missing or complete values.
-
pct_miss_var()pct_complete_var() - Percentage of variables containing missings or complete values
-
pct_complete() - Return the percent of complete values
-
pct_miss() - Return the percent of missing values
-
any_na()any_miss()any_complete()all_na()all_miss()all_complete() - Identify if there are any or all missing or complete values
-
any_row_miss() - Helper function to determine whether there are any missings
-
is_shade()are_shade()any_shade() - Detect if this is a shade
-
which_are_shade() - Which variables are shades?
-
common_na_numbers - Common number values for NA
-
common_na_strings - Common string values for NA
-
add_any_miss() - Add a column describing presence of any missing values
-
add_label_missings() - Add a column describing if there are any missings in the dataset
-
add_label_shadow() - Add a column describing whether there is a shadow
-
add_miss_cluster() - Add a column that tells us which "missingness cluster" a row belongs to
-
add_n_miss() - Add column containing number of missing data values
-
add_prop_miss() - Add column containing proportion of missing data values
-
add_shadow() - Add a shadow column to dataframe
-
add_shadow_shift() - Add a shadow shifted column to a dataset
-
add_span_counter() - Add a counter variable for a span of dataframe
Replacing values with and to NA
Functions to help replace certain values with NA, which includes scoped variants (_at, _if, _all) that take formulas for flexible approachs. vignette("replace-with-na")
-
replace_with_na() - Replace values with missings
-
replace_with_na_all() - Replace all values with NA where a certain condition is met
-
replace_with_na_at() - Replace specified variables with NA where a certain condition is met
-
replace_with_na_if() - Replace values with NA based on some condition, for variables that meet some predicate
-
replace_to_na() - Replace values with missings
-
replace_na_with() - Replace NA value with provided value
Imputation helpers
Simple imputation methods for exploring visualisation and missingness structure. See vignette("exploring-imputed-values") for more details.
-
impute_below() - Impute data with values shifted 10 percent below range.
-
impute_below(<numeric>) - Impute numeric values below a range for graphical exploration
-
impute_below_all() - Impute data with values shifted 10 percent below range.
-
impute_below_at() - Scoped variants of
impute_below
-
impute_below_if() - Scoped variants of
impute_below
-
impute_factor() - Impute a factor value into a vector with missing values
-
impute_fixed() - Impute a fixed value into a vector with missing values
-
impute_mean() - Impute the mean value into a vector with missing values
-
impute_median() - Impute the median value into a vector with missing values
-
impute_mode() - Impute the mode value into a vector with missing values
-
impute_zero() - Impute zero into a vector with missing values
-
impute_mean_all()impute_mean_at()impute_mean_if() - Scoped variants of
impute_mean
-
impute_median_all()impute_median_at()impute_median_if() - Scoped variants of
impute_median
-
set_prop_miss()set_n_miss() - Set a proportion or number of missing values
-
naniar-packagenaniar - naniar: Data Structures, Summaries, and Visualisations for Missing Data
-
cast_shadow() - Add a shadow column to a dataset
-
cast_shadow_shift() - Add a shadow and a shadow_shift column to a dataset
-
cast_shadow_shift_label() - Add a shadow column and a shadow shifted column to a dataset
-
label_miss_1d() - Label a missing from one column
-
label_miss_2d() - label_miss_2d
-
label_missings() - Is there a missing value in the row of a dataframe?
-
where_na() - Which rows and cols contain missings?
-
which_na() - Which elements contain missings?
-
.where() - Split a call into two components with a useful verb name
-
oceanbuoys - West Pacific Tropical Atmosphere Ocean Data, 1993 & 1997.
-
pedestrian - Pedestrian count information around Melbourne for 2016
-
riskfactors - The Behavioral Risk Factor Surveillance System (BRFSS) Survey Data, 2009.
-
mcar_test() - Little's missing completely at random (MCAR) test
-
StatMissPoint - naniar-ggproto