Provide a data.frame containing each case (row), the number and percent of missing values in each case.
Examples
miss_case_cumsum(airquality)
#> Warning: `miss_case_cumsum()` was deprecated in naniar 1.1.0.
#> ℹ Please use `miss_var_summary(data, add_cumsum = TRUE)`
#> # A tibble: 153 × 3
#> case n_miss n_miss_cumsum
#> <int> <int> <int>
#> 1 1 0 0
#> 2 2 0 0
#> 3 3 0 0
#> 4 4 0 0
#> 5 5 2 2
#> 6 6 1 3
#> 7 7 0 3
#> 8 8 0 3
#> 9 9 0 3
#> 10 10 1 4
#> # ℹ 143 more rows
if (FALSE) {
library(dplyr)
airquality %>%
group_by(Month) %>%
miss_case_cumsum()
}