Once data is in nabular form, where the shadow is bound to the data, it
can be useful to reshape it into a long format with the shadow columns
in a separate grouping - so you have variable, value, and
variable_NA and value_NA.
Arguments
- shadow_data
a data.frame
- ...
bare name of variables that you want to focus on
- fn_value_transform
function to transform the "value" column. Default is NULL, which defaults to
as.character. Be aware thatas.numericmay fail for some instances if it cannot coerce the value into numeric. See the examples.- only_main_vars
logical - do you want to filter down to main variables?
Examples
aq_shadow <- nabular(airquality)
shadow_long(aq_shadow)
#> # A tibble: 918 × 4
#> variable value variable_NA value_NA
#> <chr> <chr> <chr> <fct>
#> 1 Ozone 41 Ozone_NA !NA
#> 2 Solar.R 190 Solar.R_NA !NA
#> 3 Wind 7.4 Wind_NA !NA
#> 4 Temp 67 Temp_NA !NA
#> 5 Month 5 Month_NA !NA
#> 6 Day 1 Day_NA !NA
#> 7 Ozone 36 Ozone_NA !NA
#> 8 Solar.R 118 Solar.R_NA !NA
#> 9 Wind 8 Wind_NA !NA
#> 10 Temp 72 Temp_NA !NA
#> # ℹ 908 more rows
# then filter only on Ozone
shadow_long(aq_shadow, Ozone)
#> # A tibble: 153 × 4
#> variable value variable_NA value_NA
#> <chr> <chr> <chr> <fct>
#> 1 Ozone 41 Ozone_NA !NA
#> 2 Ozone 36 Ozone_NA !NA
#> 3 Ozone 12 Ozone_NA !NA
#> 4 Ozone 18 Ozone_NA !NA
#> 5 Ozone NA Ozone_NA NA
#> 6 Ozone 28 Ozone_NA !NA
#> 7 Ozone 23 Ozone_NA !NA
#> 8 Ozone 19 Ozone_NA !NA
#> 9 Ozone 8 Ozone_NA !NA
#> 10 Ozone NA Ozone_NA NA
#> # ℹ 143 more rows
shadow_long(aq_shadow, Ozone, Solar.R)
#> # A tibble: 306 × 4
#> variable value variable_NA value_NA
#> <chr> <chr> <chr> <fct>
#> 1 Ozone 41 Ozone_NA !NA
#> 2 Solar.R 190 Solar.R_NA !NA
#> 3 Ozone 36 Ozone_NA !NA
#> 4 Solar.R 118 Solar.R_NA !NA
#> 5 Ozone 12 Ozone_NA !NA
#> 6 Solar.R 149 Solar.R_NA !NA
#> 7 Ozone 18 Ozone_NA !NA
#> 8 Solar.R 313 Solar.R_NA !NA
#> 9 Ozone NA Ozone_NA NA
#> 10 Solar.R NA Solar.R_NA NA
#> # ℹ 296 more rows
# ensure `value` is numeric
shadow_long(aq_shadow, fn_value_transform = as.numeric)
#> # A tibble: 918 × 4
#> variable value variable_NA value_NA
#> <chr> <dbl> <chr> <fct>
#> 1 Ozone 41 Ozone_NA !NA
#> 2 Solar.R 190 Solar.R_NA !NA
#> 3 Wind 7.4 Wind_NA !NA
#> 4 Temp 67 Temp_NA !NA
#> 5 Month 5 Month_NA !NA
#> 6 Day 1 Day_NA !NA
#> 7 Ozone 36 Ozone_NA !NA
#> 8 Solar.R 118 Solar.R_NA !NA
#> 9 Wind 8 Wind_NA !NA
#> 10 Temp 72 Temp_NA !NA
#> # ℹ 908 more rows
shadow_long(aq_shadow, Ozone, Solar.R, fn_value_transform = as.numeric)
#> # A tibble: 306 × 4
#> variable value variable_NA value_NA
#> <chr> <dbl> <chr> <fct>
#> 1 Ozone 41 Ozone_NA !NA
#> 2 Solar.R 190 Solar.R_NA !NA
#> 3 Ozone 36 Ozone_NA !NA
#> 4 Solar.R 118 Solar.R_NA !NA
#> 5 Ozone 12 Ozone_NA !NA
#> 6 Solar.R 149 Solar.R_NA !NA
#> 7 Ozone 18 Ozone_NA !NA
#> 8 Solar.R 313 Solar.R_NA !NA
#> 9 Ozone NA Ozone_NA NA
#> 10 Solar.R NA Solar.R_NA NA
#> # ℹ 296 more rows
