Skip to contents

Once data is in nabular form, where the shadow is bound to the data, it can be useful to reshape it into a long format with the shadow columns in a separate grouping - so you have variable, value, and variable_NA and value_NA.

Usage

shadow_long(shadow_data, ..., fn_value_transform = NULL, only_main_vars = TRUE)

Arguments

shadow_data

a data.frame

...

bare name of variables that you want to focus on

fn_value_transform

function to transform the "value" column. Default is NULL, which defaults to as.character. Be aware that as.numeric may fail for some instances if it cannot coerce the value into numeric. See the examples.

only_main_vars

logical - do you want to filter down to main variables?

Value

data in long format, with columns variable, value, variable_NA, and value_NA.

Examples


aq_shadow <- nabular(airquality)

shadow_long(aq_shadow)
#> # A tibble: 918 × 4
#>    variable value variable_NA value_NA
#>    <chr>    <chr> <chr>       <fct>   
#>  1 Ozone    41    Ozone_NA    !NA     
#>  2 Solar.R  190   Solar.R_NA  !NA     
#>  3 Wind     7.4   Wind_NA     !NA     
#>  4 Temp     67    Temp_NA     !NA     
#>  5 Month    5     Month_NA    !NA     
#>  6 Day      1     Day_NA      !NA     
#>  7 Ozone    36    Ozone_NA    !NA     
#>  8 Solar.R  118   Solar.R_NA  !NA     
#>  9 Wind     8     Wind_NA     !NA     
#> 10 Temp     72    Temp_NA     !NA     
#> # ℹ 908 more rows

# then filter only on Ozone
shadow_long(aq_shadow, Ozone)
#> # A tibble: 153 × 4
#>    variable value variable_NA value_NA
#>    <chr>    <chr> <chr>       <fct>   
#>  1 Ozone    41    Ozone_NA    !NA     
#>  2 Ozone    36    Ozone_NA    !NA     
#>  3 Ozone    12    Ozone_NA    !NA     
#>  4 Ozone    18    Ozone_NA    !NA     
#>  5 Ozone    NA    Ozone_NA    NA      
#>  6 Ozone    28    Ozone_NA    !NA     
#>  7 Ozone    23    Ozone_NA    !NA     
#>  8 Ozone    19    Ozone_NA    !NA     
#>  9 Ozone    8     Ozone_NA    !NA     
#> 10 Ozone    NA    Ozone_NA    NA      
#> # ℹ 143 more rows

shadow_long(aq_shadow, Ozone, Solar.R)
#> # A tibble: 306 × 4
#>    variable value variable_NA value_NA
#>    <chr>    <chr> <chr>       <fct>   
#>  1 Ozone    41    Ozone_NA    !NA     
#>  2 Solar.R  190   Solar.R_NA  !NA     
#>  3 Ozone    36    Ozone_NA    !NA     
#>  4 Solar.R  118   Solar.R_NA  !NA     
#>  5 Ozone    12    Ozone_NA    !NA     
#>  6 Solar.R  149   Solar.R_NA  !NA     
#>  7 Ozone    18    Ozone_NA    !NA     
#>  8 Solar.R  313   Solar.R_NA  !NA     
#>  9 Ozone    NA    Ozone_NA    NA      
#> 10 Solar.R  NA    Solar.R_NA  NA      
#> # ℹ 296 more rows

# ensure `value` is numeric
shadow_long(aq_shadow, fn_value_transform = as.numeric)
#> # A tibble: 918 × 4
#>    variable value variable_NA value_NA
#>    <chr>    <dbl> <chr>       <fct>   
#>  1 Ozone     41   Ozone_NA    !NA     
#>  2 Solar.R  190   Solar.R_NA  !NA     
#>  3 Wind       7.4 Wind_NA     !NA     
#>  4 Temp      67   Temp_NA     !NA     
#>  5 Month      5   Month_NA    !NA     
#>  6 Day        1   Day_NA      !NA     
#>  7 Ozone     36   Ozone_NA    !NA     
#>  8 Solar.R  118   Solar.R_NA  !NA     
#>  9 Wind       8   Wind_NA     !NA     
#> 10 Temp      72   Temp_NA     !NA     
#> # ℹ 908 more rows
shadow_long(aq_shadow, Ozone, Solar.R, fn_value_transform = as.numeric)
#> # A tibble: 306 × 4
#>    variable value variable_NA value_NA
#>    <chr>    <dbl> <chr>       <fct>   
#>  1 Ozone       41 Ozone_NA    !NA     
#>  2 Solar.R    190 Solar.R_NA  !NA     
#>  3 Ozone       36 Ozone_NA    !NA     
#>  4 Solar.R    118 Solar.R_NA  !NA     
#>  5 Ozone       12 Ozone_NA    !NA     
#>  6 Solar.R    149 Solar.R_NA  !NA     
#>  7 Ozone       18 Ozone_NA    !NA     
#>  8 Solar.R    313 Solar.R_NA  !NA     
#>  9 Ozone       NA Ozone_NA    NA      
#> 10 Solar.R     NA Solar.R_NA  NA      
#> # ℹ 296 more rows